(X^2-5x)+(7x+20)=10x+5

Simple and best practice solution for (X^2-5x)+(7x+20)=10x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X^2-5x)+(7x+20)=10x+5 equation:



(X^2-5X)+(7X+20)=10X+5
We move all terms to the left:
(X^2-5X)+(7X+20)-(10X+5)=0
We get rid of parentheses
X^2-5X+7X-10X+20-5=0
We add all the numbers together, and all the variables
X^2-8X+15=0
a = 1; b = -8; c = +15;
Δ = b2-4ac
Δ = -82-4·1·15
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2}{2*1}=\frac{6}{2} =3 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2}{2*1}=\frac{10}{2} =5 $

See similar equations:

| -88=5a+2 | | 11+6b=3b-4 | | 616=(7)(8)(x+4) | | x+88+88=180 | | -7x+13+8x=2+x+11 | | 8x/1=2x+4 | | y^2-49y+180=0 | | 5+2k=-2k-1+2k | | (3x+6)(4x-7)=180 | | x+39+39=180 | | 5x+6=2x+2=3x-8 | | X^2-5x+7x+20=10x+5 | | 7x+4/8=3 | | 40x+3x+x=180 | | 5x+8+2x-6=180 | | |7x+4/8|=3 | | 4n-3-6=5n-6 | | 6x+35+9x=15(x+9=15(x+4)-25 | | x=x=36=180 | | 3x+4=-10x+16 | | -5+2r=7-r | | -(3)/(4)x=12 | | 500+11x=1000+7x | | X+5=4x-8 | | 29.94+0.10t=32.99+0.05t | | (1/5)x+(1/3)=1 | | 3(x+5)−3=40−4x | | -3m+2m=12-3m | | 120-18a=78 | | 4/x+3/6x=1/2 | | x+x=176 | | (x-4)2-36=0 |

Equations solver categories